

Mutation Based Test Case Prioritization

By

Faiza Farooq

MCS153013

MASTER OF SCIENCE IN COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2017

Mutation Based Test Case Prioritization

By

Faiza Farooq

A thesis submitted to the

Department of Computer Science in partial fulfillment of the requirements for the

degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CAPITAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

ISLAMABAD

2017

CERTIFICATE OF APPROVAL

Mutation Based Test Case Prioritization

By

Faiza Farooq

MCS153013

THESIS EXAMINING COMMITTEE

S No Examiner Name Organization

(a) External Examiner Dr. Asim Noor Comsats, Islamabad

(b) Internal Examiner Dr. Nayyer Masood CUST, Islamabad

(c) Supervisor Dr. Aamer Nadeem CUST, Islamabad

Dr. Aamer Nadeem

Thesis Supervisor

 October, 2017

Dr. Nayyer Masood

Head

Department of Computer Science

Dated : October, 2017

 Dr. Muhammad Abdul Qadir

 Dean

 Faculty of Computing

 Dated : October, 2017

CAPITAL UNIVERSITY OF SCIENCE & TECHNOLOGY

ISLAMABAD

Certificate

This is to certify that Miss Faiza Farooq has incorporated all observations, suggestions and

comments made by the external evaluators as well as the internal examiners and thesis

supervisor. The title of her Thesis is: Mutation Based Test Case Prioritization.

Dr. Aamer Nadeem

 (Thesis Supervisor)

Copyright ©2017 by Faiza Farooq

All rights reserved. Reproduction in whole or in part in any form requires the prior written

permission of Faiza Farooq (MCS-153013) or designated representative.

I dedicate my dissertation work to my family, teachers and friends. A special feeling of gratitude

is for my loving parents for their love, endless support and encouragement.

ACKNOWLEDGMENT

All worship and praise is for ALLAH (S.W.T), the creator of whole worlds. First and leading, I

would like to say thanks to Him for providing me the strength, knowledge and blessings to

complete this research work. Secondly, special thanks to my respected supervisor Dr. Aamer

Nadeem for his assistance, valuable time and guidance. I sincerely thank him for his support,

encouragement and advice in the research area. He enabled me to develop an understanding of

the subject. He has taught me, both consciously and unconsciously, how good experimental work

is carried out. Sir you will always be remembered in my prayers. I would like to thank Hassaan

Minhas and Mubashir Kaleem, students of BS(CS), for implementation of mutation testing tool. I

would also like to thank all members of CSD research group for their comments and feedback on

my research work.

I am highly beholden to my parents, for their assistance, support (moral as well as financial) and

encouragement throughout the completion of this Master of Science degree. This all is due to

love that they shower on me in every moment of my life. No words can ever be sufficient for the

gratitude I have for my parents. I hope I have met my parents‟ high expectations.

I pray to ALLAH (S.W.T) that may He bestow me with true success in all fields in both worlds

and shower His blessed knowledge upon me for the betterment of all Muslims and whole

Mankind.

Aameen

Faiza Farooq

Declaration

It is declared that this is an original piece of my own work, except where otherwise

acknowledged in text and references. This work has not been submitted in any form for another

degree or diploma at any university or other institution for tertiary education and shall not be

submitted by me in future for obtaining any degree from this or any other University or

Institution.

Faiza Farooq

MCS-153013

Abstract

To verify that the software is error free and works as intended, software testing is carried out.

Testing is an important process since it ensures the software reliability and quality. Software

commonly undergoes many modifications after its release. After modifying the software,

regression testing is done to ensure that no new faults have been introduced in the previously

tested software after modification and the software continues to work correctly. Regression

testing is an expensive process since the size of test suite might be too large to execute. Thus to

reduce the cost of such testing, three types of regression testing techniques are used which

include test case selection, test suite minimization and test case prioritization. The focus of our

research is on test case prioritization. Software testers prioritize their test cases so that those test

cases which are more likely to detect faults earlier are executed first, in case of not having

enough resources to execute the test suite in full. Test case prioritization is mainly used to

increase rate of fault detection of test suite. A number of white box and black box techniques

have been introduced to prioritize the test cases. These techniques are mostly coverage based

prioritization techniques and assign the higher priorities to test cases achieving greater code

coverage. These techniques may assign lower priorities to those test cases which have higher

potential of exposing faults in the system. A better approach is to prioritize test cases based on

their potential of fault detection. There are only few fault based prioritization techniques which

assign priorities to test cases based on their fault exposing potential but it is difficult to determine

the fault exposing potential because there is no way to find out the total numbers of faults in the

program and that what faults are detected by particular test case.

In this thesis, we propose an approach which exploits mutation testing in order to assign

priorities to test cases. Using mutation testing, we introduce different changes (mutations) in

original program thus creating a number of mutated copies of the program called mutants, and

priorities are assigned to test cases based on their potential to find these faults, i.e., kill mutants.

This approach can significantly increase the rate of fault detection as the priorities are assigned

to the test cases based on their ability of fault detection. We have implemented our tool, MuCap,

which is used to generate mutants, generates and executes test cases on those mutants and then

prioritizes the test cases based on number of mutants killed. We have evaluated and compared

our approach with existing technique using a number of example programs. The result shows

that our approach performs better than existing approaches in terms of APFD.

Contents

List of Figures xiii

List of Tables xiv

Chapter 1 : Introduction 1

1.1 Regression Testing 1

1.2 Test Case Prioritization 4

1.3 Prioritization Criteria 6

1.4 Problem Statement 7

1.5 Research Questions 7

1.6 Research Methodology 8

1.7 Research Contributions 9

1.8 Thesis Organization 9

Chapter 2 : Literature Review 10

2.1 White Box Prioritization Techniques 10

2.1.1 Prioritization techniques based on coverage 10

2.1.2 History based prioritization 11

2.1.3 Additional Spanning Entities Coverage based Prioritization 11

2.2 Black Box Prioritization Techniques 12

2.2.1 Interaction Coverage Based Prioritization 12

2.2.2 Requirements clustering based prioritization 12

2.2.3 Prioritization of Requirements for Testing (PORT) 12

2.2.4 History based test case prioritization 13

2.2.5 A Hierarchical System Test Case Prioritization Technique 13

2.3 Comparison 14

2.4 Gaps Analysis 15

Chapter 3 : Proposed Approach 17

3.1 Mutation Testing 17

3.2 Mutation Based Prioritization 19

3.2.1 Mutants Generation 19

3.2.2 Mapping of test cases to mutants 22

3.2.3 Applying prioritization algorithm 23

Chapter 4 : Implementation 28

4.1 Implementation details 30

4.1.1 Mutant Generation 30

4.1.2 Test Case Execution 31

4.1.3 Prioritizing Test Cases 32

4.2 User interfaces 34

4.2.1 Mutant Generation 34

4.2.2 Test case Execution 36

Chapter 5 : Results and Discussion 40

5.1 Subject programs 40

5.2 Comparison 44

Chapter 6 : Conclusion and Future Work 49

6.1 Future work 50

References 52

Appendix A: Source Codes of example programs 56

Appendix B: Test data for example programs 60

List of Figures

Figure 1.1: Regression Testing ... 2

Figure 1.2: Regression Testing Techniques .. 3

Figure 3.1: An illustration of proposed solution ... 20

Figure 3.2: Greedy Algorithm for Prioritization ... 24

Figure 4.1: MuCap .. 29

Figure 4.2: Architecture diagram of mutant generator ... 29

Figure 4.3: Architecture diagram of test suite generator and executer ... 30

Figure 4.4: Architecture diagram of test suite prioritization... 30

Figure 4.5: Class diagram of mutant generator ... 33

Figure 4.6: Class diagram of test suite generator and executer .. 34

Figure 4.7: Source Code Selection.. 35

Figure 4.8: Mutation Operator Selection .. 35

Figure 4.9: Mutants‟ Generation Summary .. 36

Figure 4.10: Taking Boundary values ... 37

Figure 4.11: Displaying all five values ... 37

Figure 4.12: Displaying test cases .. 38

Figure 4.13: Execution of test cases ... 38

Figure 4.14: Test cases to mutants mapping ... 39

Figure 5.1: Graphical representation of fault detection of test cases for Triangle Problem 46

Figure 5.2: Graphical representation of fault detection of test cases for Commission problem ... 47

Figure 5.3: Graphical representation of fault detection of test cases for Date problem 47

List of Tables

Table 2.1: Comparison of White box prioritization techniques .. 14

Table 2.2: Comparison of Black box prioritization techniques .. 15

Table 3.1: Mutation Operators (Offutt et al., 1993) .. 17

Table 3.2: Mutant example ... 18

Table 3.3: Relational operators ... 19

Table 3.4: Mutated conditions of the program.. 21

Table 3.5: Test cases for the program ... 22

Table 3.6: Mapping of the test case to mutants .. 23

Table 3.7: Mapping of the test case to mutants .. 25

Table 5.1: Subject Programs summary .. 42

Table 5.2: Subject Programs‟ Priority Lists .. 42

Table 5.3: Subject Programs‟ APFD .. 45

1

Chapter 1 : Introduction

Software development process is complex and error prone. Errors can occur at any stage

of the development process. These errors must be detected and removed as early as

possible to reduce the development cost, as these errors, if propagated to latter stages of

development cycle, become harder to remove. Thus, to verify that software is bug free,

testing process is carried out (Baresi and Pezz`e, 2006). In testing process, software is

executed using test data and observed behavior is compared with expected behavior to

verify that the software works as intended. After the development and testing of the

system, it is released for the use.

1.1 Regression Testing

Software may be modified after the release for enhancing its performance, removing the

bugs or adding or deleting a module. Whenever software is modified, it is retested to

ensure that new errors have not been introduced in the code which was previously tested

and it continues to work correctly. Such testing is called regression testing. It provides the

confidence that new addition to the software does not change the behavior of the existing

part of the software (Elbaum, 2002). Regression testing is carried out between two

versions of the software; original and the modified version. It might begin in the

development phase after identification and correction of errors by reusing the existing test

cases to retest the system. The process of regression testing is shown in Figure 1.1.

Regression testing is mainly a part of maintenance phase where the system is updated,

fine-tuned or corrected. Some maintenance requires the change in the specifications of

the software and is known as progressive maintenance. Other does not require the

specification to be changed but just identification and correction of errors and is known

as corrective maintenance. Based on the type of modification/maintenance, Leung and

White (1989) define two types of regression testing; one is called progressive regression

testing and other is known as corrective regression testing.

2

 Progressive regression testing is performed whenever specification is changed by

adding new features.

 Corrective regression testing is performed when software specification remains

unchanged i.e. correction of errors.

Figure 1.1: Regression Testing

Leung and White (1989) also categorize the test cases for regression testing into five

classes where the first three classes including Retestable, Reusable and Obsolete contain

the test cases which are already part of the test suite and the other two classes including

New-Structural and New-Specification consist of test cases that need to be designed to

perform regression testing of the modified program.

 Reusable test cases test the parts of the programs which are unmodified.

 Retestable test cases are those which test the changed parts of the system.

 Obsolete test cases include those that can no longer be used because i) their

input/output relation with the system is no more accurate because of the

modification, ii) they no longer test, what they were supposed to test, iii) they are

Build

Software

Test

Software

Release

Software

Modify/

maintain

Selection/

minimization/

prioritization

Original Test

Suite

Regression

Test Suite

Test

modified

software

Modified

version

3

structural test cases that do not provide any structural coverage because of the

modifications.

 New-Structural test cases are used to test the modified program code; they are

designed to increase structural coverage.

 New-Specification test cases are used to test code generated against modified

specification.

The typical approach for the regression testing is the “retest all” approach requiring the

software to be executed against every test case in existing test suite. However, it is an

expensive process and as the software evolves, the size of test suite tends to increase,

making it even more complex and expensive to execute every test case (Burnstein et al.,

2003). Thus to minimize the cost of regression testing, different approaches are used

including test suite minimization, test case selection and test case prioritization as shown

in Figure 1.2.

Figure 1.2: Regression Testing Techniques

To limit the cost of regression testing without reducing the overall effectiveness, software

testers choose a subset of test suites using these techniques.

 Test suite minimization is used to eliminate test cases which are redundant based on

some coverage criteria from the test suite leaving behind the minimal hitting set

(Garey and Johnson, 1979). For each test requirement ri in the testing process, a

subset of test cases Ti is created such that each test case in Ti meets requirement ri.

These subsets might overlap. In test suite minimization, T
‟
 is found such that it

contains test cases which cover all subsets. If all subsets are covered then all

requirements are met. Test suite minimization is an NP-Complete problem and

Test Case Selection

Test Case

Minimization

Regression Testing

Techniques

Test Case

Prioritization

4

different heuristics have been proposed to solve the problem of minimal hitting set

(Chen et al., 1996; Harrold et al., 1993; Horgan et al., 1992; Offutt et al., 1995).

 Test case selection selects the most relevant test cases which are valid and traverse

the required parts of the program but is an expensive process since it is a

modification aware process requiring the identification of modified parts of the

program and selection of the test cases relevant to execution of those identified

modified parts of the software (Rothermel and Harrold, 1994).

 The test case prioritization, in contrast, does not eliminate any test cases, rather tends

to find an ordered list of test cases which provides the maximum benefits to the

software testers. The software testers assign priority to every test case in test suite to

ensure that the test cases having higher priorities are run earlier in the testing process

(Srivastava et al., 2008).

1.2 Test Case Prioritization

It produces an ordered list of test cases by assigning them priorities based on some

criteria so that the tester is provided with the maximum benefit. One testing benefit is

increased rate of fault detection which is the measure of how early faults can be detected

by the test suite (Elbaum, 2002). If maximum number of faults can be detected by

minimum number of test cases and those test cases are among the top test cases of

priority list then the rate of fault detection increases. Improved rate of fault detection

provides the feedback on the system in earlier phases. A priority list can be used to

decide when to stop testing in case of having not enough resources to execute all tests.

Prioritization will also make sure that if, in any case, testing is halted prematurely, then

most important tests, with higher priorities, will have been executed (Yoo and Harman,

2012). Test case prioritization was first introduced by Wong et al. (1997) and was applied

to the test cases selected by the RTS techniques. Harrold et al. (1999) and Rothermel et

al.(1999) then extended the concept and proposed it in more general context.

Test case prioritization does not select test cases and rather allows every test case to be

executed. However, Rothermel discussed that if elimination of test cases is acceptable

then in some cases, test case prioritization can be used with test suite minimization and

5

test case selection, where it is applied to the selected subset of the test suite (Elbaum et

al., 2001).

Test case prioritization is formally defined as:

Finding an optimal ordering of test cases is an NP hard problem and there is no

deterministic solution for it (Li et al., 2007).To solve the NP hard problem of

prioritization, many techniques and algorithms have been proposed in the literature which

are mainly heuristics and give sub-optimal results (Fazlalizadeh et al., 2009). Different

algorithms are available for the prioritization including:

 Greedy Algorithm which selects the test cases based on the total number of entities

covered. Higher the number of entities covered, higher the priority (Elbaum, 2002).

 Additional Greedy Algorithm is a variation of greedy algorithm which selects the

test case based on the total number of entities covered which were not covered by

previously selected test case (Elbaum, 2002).

 2-Optimal Algorithm, which is a variation of K-Optimal algorithm, is form of greedy

algorithm used for prioritizing test cases. Like the previously described algorithm, it

iteratively chooses test case(s) which achieve maximum coverage of statements not

covered by the previously selected test cases. Unlike additional greedy, in each

round it adds two best test cases to the prioritized test suite which achieve maximum

additional coverage instead of just one test case. When all the entities have been

covered, it prioritizes the remaining redundant test cases by resetting the coverage

(Lin, 1965).

 Genetic Algorithm (Kaur and Goyal, 2011) in which desired population of

chromosomes is used to search optimal solution. The new set of population can be

used to replace initial population. Test suites with random orders represent the

6

chromosomes in population and fitness function of chromosomes is evaluated based

on total code coverage.

 Genetic Algorithm & Simulated Annealing Algorithms is a technique which

combines Genetic Algorithm (GA) and Simulated Annealing (SA) and is termed as

GASA. This Technique takes the advantage of both algorithms to make regression

testing more efficient. GASA uses the quick processing property of GA and efficient

solution property of SA. Solution is randomly generated by GA and is further refined

by SA (Maheswari and Mala, 2015).

Each of the algorithm takes the test suite and coverage information and produces the

prioritized list. The algorithm that we are using for our research is Additional Greedy

Algorithm which gives the first priority to test case that achieves maximum coverage

vector and then assigns the second priority to the test case that covers the maximum

number of uncovered entities and so on until all the uncovered entities have been

covered.

1.3 Prioritization Criteria

Different criteria are used for prioritization of test case. These prioritization criterions are

used for assigning the award values to the test cases. The test case having the maximum

award value is given the highest priority. Some prioritization techniques use the coverage

factor of elements of the source code including statements, branches, spanning entities or

functions for assigning the award values (Rothermel et al., 2001). Others use the

information about specification of the system including the interaction between the

events, requirements priority etc, to prioritize test cases in test suite (Henard et al., 2016).

The prioritized lists created using these criterions are then evaluated. The basic parameter

for the evaluation of prioritization techniques is rate of fault detection i.e. Average

Percentage of Faults Detected (APFD) which is the measure of how early faults are

detected in the testing process by the test suite (Rothermel et al., 1999). APFD is

calculated using following formula:

𝐴𝑃𝐹𝐷 = 1−
𝑇𝐹1 +⋯… . .𝑇𝐹𝑚

𝑛𝑚
+
1

2𝑛

7

Where T is the test suite with n test cases and F is the set of m faults identifies by T. For

ordering T‟, TFi represents the order of the first test case that exposes the ith fault Fi.

1.4 Problem Statement

A lot of research work has been done in this area, many white box and black box

techniques have been developed to prioritize the test cases for increasing the rate of fault

detection. Most of those techniques are coverage based and only consider if a branch,

statement or function has been covered by the test case. In coverage based techniques, it

is assumed that the coverage will maximize the rate of fault detection but this relation

between coverage and fault detection rate does not always hold. The test case with the

better ability to find the faults may be given the low priority. There are only few existing

test case prioritization techniques which prioritize test cases based on their ability to

expose faults but the fault exposing potential of the test case cannot be calculated

accurately.

1.5 Research Questions

In this research work, we will use mutation testing as criteria to generate a priority list by

using the mutants of a given program. However, the following questions must be taken

into account:

RQ. 1: What are the existing and most commonly used test case prioritization

techniques?

To answer this research question, a literature survey is conducted through which we

identify the existing and most commonly used techniques.

RQ. 2: What are the gaps in the existing prioritization techniques?

Through study of existing techniques in literature in detail, we identify such gaps.

RQ. 3: How well does the mutation based prioritization technique compare with the well

studied white box and black box prioritization techniques with respect to fault detection

rate?

8

A number of experiments are performed on different subject programs and their

respective test suites and APFDs of each test suite are calculated for proposed and

existing techniques to perform comparison.

Our research will be focused to answer these research questions with reference to the

prioritization algorithm.

1.6 Research Methodology

1. First of all, we have done literature review to identify the most relevant and most

commonly used white box and black box prioritization techniques. After studying

various prioritization techniques, we have reached the conclusion that these

techniques are coverage based. There are only a few fault based prioritization

techniques.

2. To overcome the gap in existing techniques, we have proposed a new approach that

will assign priority to each test case based on its ability to expose maximum

number of faults, i.e. killing the maximum number of mutants.

3. The implementation of our approach will be performed in following steps:

i. In the first phase, we collect all data including subject programs. After

collecting the data, we create mutants of each program by applying different

mutation operators.

ii. After having created the mutants, in next phase, we collect test suite of each

subject program, then mutation testing is performed; each mutant is selected

and executed against tests in test suite until it shows a different behavior from

original program or it has been executed against all tests. We compare the

original program‟s output with the output of each mutant, if the mutant has

different output against a selected test case, the mutant will said to be killed by

that test case. We will note the number of mutants killed by each test case.

iii. In next phase, we assign priority to each test based on number of mutants

killed. Greater the number of killed mutants by a test case, higher will be its

priority in the priority list.

9

iv. We then generate another prioritized list for same program and its

corresponding set of test cases by using some existing coverage technique,

since white box prioritization techniques are more commonly used, so we use

white box technique.

4. After creating both prioritized lists (white box coverage based and mutation based),

we perform a comparison between both techniques. The rate of fault detection will

be used as the main parameter for the comparison.

1.7 Research Contributions

Research contribution in this thesis is to propose a technique which prioritizes the test

cases based on their ability to kill mutants generated using mutation testing. In mutation

testing, a slight change is introduced in the original program by using any mutation

operator, thus creating a mutant of a program. Each mutant represents a faulty version of

the program. The test case that exposes the maximum number of those faults, i.e., killing

the maximum number of mutants is said to be most efficient test case and will be given

the highest priority. We have also evaluated existing technique on our test data and

compared it with our approach.

1.8 Thesis Organization

Rest of the thesis is organized as, in Chapter two existing test case prioritization

techniques are discussed, mainly test cases can be prioritized using either white box

prioritization techniques or using black box prioritization techniques. Both types of

techniques are discussed in this chapter. Third chapter is about proposed solution, fourth

chapter is on implementation details, fifth chapter is about results and discussion and

sixth chapter is on conclusions which we have made from this research and future work

on how we can extend this.

10

Chapter 2 : Literature Review

The prioritization techniques fall into two categories: White box and Black box

prioritization.

 In white box prioritization techniques code of the software is used to define criteria

for prioritizing the test cases. These techniques are mainly coverage based

techniques.

 Black box prioritization techniques have no structural information; rather use the

specification of the software to prioritize test cases, for example, requirements

priorities, events in event driven systems, etc, are used for prioritization.

This chapter contains an overview of techniques which are already proposed by different

researchers to prioritize the test cases.

2.1 White Box Prioritization Techniques

Such prioritization techniques are based upon the source code of the software. These

techniques are only differentiated by the elements of source code they use for defining

the prioritization criterion. Different white box techniques are defined below.

2.1.1 Prioritization techniques based on coverage

Elbaum et al. (2001) introduced two types of white box prioritization strategies:

a) Coverage-based techniques that prioritize test cases based on their coverage of

elements of source code. These coverage based techniques are further divided into

two categories; a) Total coverage based prioritization which assigns priorities to test

case based on the total number of functions, branches or statements covered. b)

Additional coverage based prioritization, which assigns priorities to test cases based

on the additional entities, i.e., functions, branches or statements covered. The test

case that covers maximum number of uncovered entities is given highest priority.

11

b) Fault based techniques that prioritize test cases based on their fault exposing

potential. For calculating the fault exposing potential of test cases, they used

mutation testing. For each statement, number of mutants is created and mutation

score of each test case for each statement is calculated and the test case that has the

maximum accumulated mutation score is given the highest priority. The test cases

are ordered in the descending order of their mutation score.

2.1.2 History based prioritization

History-based prioritization was introduced by Kim and Porter (2002) which is based on

the history of test cases in order to prioritize them. In this technique, information from

previous execution cycles was used as criteria for selection of subset of test suite that

must be executed for a modified program. RTS technique was applied to test suite T that

produced T‟ in the 1
st
 step. After that in 2

nd
 step, every test in T‟ was assigned selection

probability. In 3
rd

 step, probabilities assigned in previous step were used to select a test

case and run it. The final step includes the repetition of 3
rd

 step until the testing time is

finished.

The selection probability was assigned to each test case based on its prior performance.

They used test histories based on execution history, fault detection rate and program

entities covered.

2.1.3 Additional Spanning Entities Coverage based Prioritization

Marre´ and Bertolino (2003) introduced a concept of spanning set of entities to be used as

criterion to prioritize the test cases. They used the subsumption relationship between

entities to find the spanning set, i.e., given two entities E and E‟, if every complete path

that covers E also covers E‟, then E subsumes E‟, but there exist some entities that are

unconstrained, i.e., an entity E is called unconstrained if it is not subsumed by any other

entity E‟ without being itself subsumed by E, the smallest subset of such unconstrained

entities is called a spanning set with a property that any subset of test cases that covers

this subset of entities covers every entity in the program. Their technique was divided

further into two approaches: Additional Spanning Statements and Additional Spanning

12

Branches. The test case that covers the maximum number of uncovered spanning

statements or branches is given the highest priority.

2.2 Black Box Prioritization Techniques

Black box prioritization techniques use the specification of the system to define the

prioritization criterion and have no knowledge of structure of the software. Different

black box techniques are defined below.

2.2.1 Interaction Coverage Based Prioritization

Managing test suite for event driven systems is difficult as the number of event

combinations and sequences grow exponentially with the number of events. Bryce and

Memon (2007) proposed a testing technique which extends the t-way software interaction

over sequences of events. Their proposed algorithm greedily selects a test case that

covers the maximum number of previously uncovered t-tuples of event interactions

between unique windows. If more than one test case covers same number of event

interactions, the tie is broken randomly.

2.2.2 Requirements clustering based prioritization

Software under test may have many requirements which are of high priority. All

requirements are not equally important. Arafeen and Do (2013) introduced a new

approach which uses requirements information to prioritize the test cases. This approach

uses a text mining approach for extraction of useful words from the text. Based on those

words, relevant requirements are clustered and test cases are prioritized in these

requirement clusters. Within a cluster, test cases are prioritized using code complexity.

After that, clusters are prioritized using code modification information and customer

assigned requirements priority. Finally, after having prioritized test cases and clusters,

test cases are selected from clusters by visiting each cluster using different selection

methods.

2.2.3 Prioritization of Requirements for Testing (PORT)

13

Value driven techniques improve the user based software quality by utilizing testing

effort on the requirements which are of highest priority to the customer. Srikanth et al.

(2005) proposed a value based technique named as “prioritization of requirements for

testing”, which contains four factors values: (1) customer-assigned priority of

requirements; (2) developer-perceived implementation complexity; (3) requirements

volatility; and (4) fault proneness.

Firstly, PORT calculates Prioritization Factor Value (PFV) of all requirements.

Prioritization factor value “is the summation of the product of factor value and the

assigned factor weight for each of the factors”. The importance of testing a requirement is

obtained from Prioritization factor value of that requirement. Value of PFV for a

requirement is necessary for calculation of WP (weighted priority) of its associated test

case. Weighted priority is “the PFV contribution of the requirement(s) the test case

maps”. Test cases are arranged on the basis of weighted priority value in such a way that

test case with high weighted priority value is assigned highest priority and so on.

2.2.4 History based test case prioritization

Source code of a program is not available in black box environment. Only limited

information is present to prioritize the test cases. Qu et al. (2007) introduced a black box

technique for prioritizing the test cases. This technique uses the run-time and test history

information. History information is used to initialize the test suite. Test case relation

matrix R, which depicts the fault detection relationship of test cases, is formed by using

available information. Then a test case is drawn from test suite and it is run. Remaining

test cases are ordered using test case relation matrix and run time information.

2.2.5 A Hierarchical System Test Case Prioritization Technique

Many approaches based on requirements have been introduced to prioritize test cases.

However, along with requirements, other factors including implementation and test case

complexity can also contribute in test case prioritization. Kumar et al. (2013) introduced

a hierarchical test case prioritization approach based on requirements. In this approach,

the prioritization process is performed at three levels. First of all, each requirement is

14

assigned a priority based on 12 different factors including customer assigned priority,

developer assigned priority, requirement volatility, fault proneness, expected fault,

implementation complexity, execution frequency, traceability, show stopper requirement,

penalty, cost and time. Customer, developer, analyst and tester assign values to those

requirement factors. The higher the value of these factors, higher the priority of that

requirement. After getting the prioritized list of requirements, a mapping between each

requirement and its corresponding modules is performed. If a requirement has more than

one corresponding modules then the modules are prioritized based on cyclomatic

complexity and non dc paths. Module with higher cyclomatic complexity and non dc

paths is given the highest priority. The last level of prioritization process includes the test

case prioritization. After getting the prioritized list of modules, the mapping between a

module and its corresponding test cases is performed. The test cases corresponding to

modules are then prioritized based on 4 factors including test impact, test case

complexity, requirement coverage and dependency. The resulting test suite is the

prioritized test suite.

2.3 Comparison

Each above technique produces an ordered list of test cases based on their respective

criteria. All of the prioritized techniques are then evaluated using some faulty programs.

Such faulty programs are usually developed through mutation rather than hand-seeded

faults since the mutation faults are the representative of real faults. Hand seeded faults

can be problematic for validity of results (Do et al., 2005).

Based on different programs, the above described techniques yielded the following APFD

(Henard et al., 2016).

Table 2.1: Comparison of White box prioritization techniques

No. Technique Information required Tool Support APFD

1 Total Function Function Coverage Yes 69%

2 Additional Function Uncovered Functions Yes 87%

3 Total Statement Statement Coverage Yes 67%

4 Additional Statement Uncovered Statements Yes 89%

5 Total Branches Branch Coverage Yes 67%

15

6 Additional Branches Uncovered Branches Yes 90%

7 Total FEP Fault Exposing

Probability

Yes 88%

8 Additional FEP Confidence Factor Yes 89%

9 Additional Spanning

Statements

Spanning statements

and their coverage

No 89%

10 Additional Spanning

Branches

Spanning branches and

their coverage

No 90%

11 History Based Exec. History, APFD

and program entities

covered

Yes N/A

Table 2.2: Comparison of Black box prioritization techniques

No. Technique Information required Tool Support APFD

1 T-wise Event Sequences No 87%

2 Requirements Clustering

based

Customer assigned

Req. priority, code

complexity,

modification

information

Yes N/A

3 PORT PFV & WP Yes 47%

4 History Based Relation matrix and

run time information

No N/A

5 HSTCP 12 Factors value,

cyclomatic

complexity, non dc

paths, test impact, test

case complexity,

requirement coverage

and dependency

Yes 67%

Out of all white box prioritization techniques, Additional Branch Coverage and

Additional Spanning Branches have yielded the highest rate of fault detection and out of

5 black box prioritization techniques, t-wise yielded the greatest APFD.

2.4 Gaps Analysis

Besides APFD, there are certain parameters which can be used to compare black box and

white box prioritization techniques, such as, black box prioritization techniques are not

code coverage based which means they do not need code for prioritizing the test cases

16

which is a benefit since in the component based software development process,

components from a third party can also be adopted and used without having the source

code of that particular component. White box prioritization techniques need code

coverage information to assign the priorities to test cases and cannot be used when the

source code is unavailable. Among the above mentioned techniques, the Total coverage

based techniques have some drawbacks as compared to Additional coverage based

techniques. When using Total coverage, the test cases are prioritized based upon the total

number of entities covered. There can be more than one test case that covers the same

entities. So there is repetition of the entities covered which is not desirable. Additional

coverage eliminates this drawback by assigning the priorities based upon the coverage of

uncovered entities. Total coverage also makes it possible to skip any entity, for example,

if a test case only covers one entity which is not covered by any other test case and that

test case is given the lowest priority, then in case of premature halting of testing process,

there is a possibility that the test case with lowest priority is never executed and that

entity covered by the test case is skipped.

All of these techniques are coverage based techniques, white box prioritization

techniques use code coverage and black box prioritization techniques use specification

coverage information. These techniques are not fault based, only fault based techniques

are FEP total and FEP additional but those prioritize test cases based on their ability to

expose faults but the fault exposing potential of the test case cannot be calculated

accurately.

17

Chapter 3 : Proposed Approach

From the literature survey, we have concluded that most of the existing prioritization

techniques use coverage information of the test cases to prioritize them. White box

prioritization techniques use the code coverage information and black box prioritization

techniques use the specification. These techniques cannot be used when the coverage

information is not available. There are only few techniques which are fault based

prioritization techniques including total FEP and additional FEP, but these fault based

techniques use probability of fault detection of test cases which cannot be calculated

accurately. We have proposed an approach that uses the ability of test cases to detect

faults, i.e., mutation testing, in order to prioritize them.

Because of the use of fault detection ability of test cases rather than coverage, it is likely

that mutation based prioritization will yield better prioritization in terms of APFD as

compared to existing prioritization techniques.

3.1 Mutation Testing

Mutation testing is a fault based technique which is used to measure the effectiveness of a

test suite (Ma and Offutt, 2006). In mutation testing, we take the original program and

introduce a slight change using mutation operators in the original code thus creating a

mutant which represents a faulty version of the program. Some of the mutation operators

are listed below:

Table 3.1: Mutation Operators (Offutt et al., 1993)

18

In mutation testing, mutants are generated by applying mutation operators resulting in

mutated copies of the original program. After the generation of mutants, in next step,

these mutants are tried to be killed using the test data. If the mutant gives different output

than the original program against the same test case, then the mutant is said to be killed

by that test case. Each mutant is executed against each test case and it is monitored that

whether it gives different output from the original program. An example of mutant is

shown below:

Table 3.2: Mutant example

Original Program Mutated Program

i f (a > b)

{

cout <<”a is greater than b”<<endl ;

}

i f (a < b)

{

cout <<”a is greater than b”<<endl ;

}

A mutant that is not killed by any test in test suite remains “alive”. Alive mutant can be

killed by enhancing the test suite and adding more test cases which can kill those alive

mutants. However, a mutant is considered equivalent to its parent program if there exists

no test that causes original and mutant program to generate different outputs. Equivalent

mutants always give same output as the original program and are not considered while

calculating the fault detection ability of test suite.

19

3.2 Mutation Based Prioritization

In mutation based prioritization, we will prioritize the test cases based on the number of

mutants killed by test cases. The test case that kills the maximum number of mutants will

be given the highest priority and the test case that kills the maximum number of unkilled

mutants will be given second priority and so on. We have used the additional approach to

prioritize the test cases because of the drawbacks of the total approach. The only

information that is needed in this approach is the mapping between the test cases and

mutants killed. When the system under test i.e. SUT, is first tested, all the information

can be gathered and we use the assumption that we have the mapping between the test

cases and mutants so we will use this information as an input to our prioritization

algorithm which in return will generate a priority list based on mutation. Proposed

solution context diagram is shown in Figure 3.1.

Listed below steps are involved to achieve our goal:

 Mutants Generation

 Mapping of test cases to mutants

 Applying prioritization algorithms to generate priority list

3.2.1 Mutants Generation

In our approach we have used ROR operator to generate mutants of the original program.

ROR operator sees which relational operator is used in a condition and replaces it with

other relational operators. ROR operators are listed in the table below:

Table 3.3: Relational operators

Relational Operators

>

<

< =

> =

= =

! =

20

Figure 3.1: An illustration of proposed solution

ROR operator generates 7 mutants against one condition in the original program having

relational operator including any 5 from the above mentioned and 2 others replacing

relational operator with “true” and “false” values.

For example, consider the following conditions in the original program:

if (marks > 80 && attendance >= 30)

 {

 grade = "A";

Test cases to Mutants

killed mapping

Prioritization

Algorithm

Mutation Based

Priority List

Test Suite

SUT

Execution of

Test suite on

SUT &

mutants

Mutant

Op

Mutants

Generatio

n

Mutants

21

 }

else

 if (marks > 80 && attendance<30)

 {

 grade = "B";

 }

There are two decisions in the original program with 2 conditions per decision. Against 4

conditions, 28 mutants will be generated as follows:

Table 3.4: Mutated conditions of the program

Original Condition Mutated Condition

1. marks > 80

1. marks > = 80

2. marks < 80

3. marks < = 80

4. marks = = 80

5. marks != 80

6. true

7. false

2. attendance > = 30 8. attendance > 30

9. attendance < 30

10. attendance < = 30

11. attendance = = 30

12. attendance != 30

13. true

14. false

3. marks > 80

15. marks > = 80

16. marks < 80

17. marks < = 80

18. marks = = 80

19. marks != 80

20. true

21. false

4. attendance < 30 22. attendance > 30

23. attendance > = 30

24. attendance < = 30

25. attendance = = 30

26. attendance != 30

27. true

28. false

There will be 28 mutant programs of the original program having one of these mutated

conditions each.

22

3.2.2 Mapping of test cases to mutants

After creating these mutants, in next step, test data is used to kill these mutants. We

collect all the information about mapping of the test cases to mutants. In this phase, we

record which test case kills which mutant by executing the test cases on SUT and

mutants.

For example, consider the following test cases for the original program:

Table 3.5: Test cases for the program

Test case# marks attendance

1 0 0

2 0 1

3 0 15

4 0 29

5 0 30

6 80 0

7 80 30

8 81 0

9 81 30

10 81 31

The above mutants will be executed one by one against each test case and if against any

test case they produce different output than the original program then the test case will be

said to have killed the mutant. For example, consider the following test case and mutant:

Test case Mutated Condition

marks < 80

Original Condition

marks > 80

Attendance Marks Mutant Output Original Output

0 0 B null

Since the output of the original program is different than mutant program, it is said to be

killed by the test case. Similarly all the mutants will be executed one by one against each

test case and their output will be compared with the output of the original program

generated against that particular test case. When all the mutants have been executed

23

against each test case, a mapping between test cases and mutants will be obtained. For the

above example, the following mapping exists:

Table 3.6: Mapping of the test case to mutants

The above data will then be used to assign priorities to the test cases.

3.2.3 Applying prioritization algorithm

After collecting the above data, this data will be used as an input to the greedy

prioritization algorithm which is mutation based prioritization algorithm generating

mutation based priority list. The algorithm is given below in Figure 3.2.

The algorithm, in first step, will find a test case that kills the maximum number of

mutants. In next step, that test case will be added to priority list and it will be removed

from the test suite and it will not be further considered, also the entitiesCov data will be

updated to indicate only the uncovered entities. In third step, a loop will start and it will

continue executing until all the entities have been covered and the test suite has no

unprioritized test case. In the loop, residual coverage for all the test cases will be

calculated which indicates the number of entities that will remain uncovered after the

execution of a particular test case. Test case having the minimum residual coverage will

be added to the priority list, if two or more such test cases exist, then the test case is

selected randomly and it will be removed from the test suite for further consideration,

entities coverage information will also be updated to indicate the uncovered entities. The

process is repeated until all entities have been covered by atleast one test case or the test

suite has no unprioritized test case. If all the entities have been covered and there are still

24

unprioritized test cases left in the test suite then they will be appended to the priority list

randomly as they are the redundant test cases.

Figure 3.2: Greedy Algorithm for Prioritization

To further elaborate the algorithm, consider the information given as an input to the

mutation based prioritization algorithm:

T‟ = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}

25

EntitiesCov = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,25,28}

Table 3.7: Mapping of the test case to mutants

Test case(t) Mutants killed cov(t)

1 16,17,19,20 4

2 16,17,19,20 4

3 16,17,19,20 4

4 16,17,19,20 4

5 2,3,5,6 4

6 15,17,18,20 4

7 1,3,4,6 4

8 9,10,12,13,16,17,18,21,22,23,25,28 12

9 2,3,4,7,8,9,12,14 8

10 2,3,4,7,9,10,11,14 8

Highest priority will be given to t8 because it kills the maximum number of mutants and

then will eliminate all the mutants killed by t8 to updates the coverage information of

unprioritized test cases to indicate their coverage of mutants that have not been yet killed

and repeats the process until all mutants have been killed by atleast one test case.

In the first step, t8 will be selected and in step 2, data will be updated like this:

PrT = {t8}

T’ = {t1, t2, t3, t4, t5, t6, t7, t9, t10}

EntitiesCov = {1,2,3,4,5,6,7,8,11,14,15,19,20}

Then in step 3 the residual coverage will be calculated for each test case until entitiesCov

&& T‟ don‟t get empty:

The residual coverage for all the test cases will be calculated as follow in step 3.1:

resCov(t1)={1,2,3,4,5,6,7,8,11,14,15,19,20}\[{16,17,19,20}∩{1,2,3,4,5,6,7,8,11,14,15,19

,20}]

 = {11}

26

resCov(t2)={1,2,3,4,5,6,7,8,11,14,15,19,20}\[{16,17,19,20}∩{1,2,3,4,5,6,7,8,11,14,15,19

,20}]

 = {11}

resCov(t3)={1,2,3,4,5,6,7,8,11,14,15,19,20}\[{16,17,19,20}∩{1,2,3,4,5,6,7,8,11,14,15,19

,20}]

 = {11}

resCov(t4)={1,2,3,4,5,6,7,8,11,14,15,19,20}\[{16,17,19,20}∩{1,2,3,4,5,6,7,8,11,14,15,19

,20}]

 = {11}

resCov(t5)={1,2,3,4,5,6,7,8,11,14,15,19,20}\[{2,3,5,6}∩{1,2,3,4,5,6,7,8,11,14,15,19,20}]

 = {9}

resCov(t6)={1,2,3,4,5,6,7,8,11,14,15,19,20}\[{15,17,18,20}∩{1,2,3,4,5,6,7,8,11,14,15,19

,20}]

 = {11}

resCov(t7)={1,2,3,4,5,6,7,8,11,14,15,19,20}\[{1,3,4,6}∩{1,2,3,4,5,6,7,8,11,14,15,19,20}]

 = {9}

resCov(t9)={1,2,3,4,5,6,7,8,11,14,15,19,20}\[{2,3,4,7,8,9,12,14}∩{1,2,3,4,5,6,7,8,11,14,

15,19, 20}]

 = {7}

resCov(t10)={1,2,3,4,5,6,7,8,11,14,15,19,20}\[{2,3,4,7,9,10,11,14}∩{1,2,3,4,5,6,7,8,11,1

4,15,19, 20}]

 = {7}

27

In step 3.2, the residual coverage of all the test cases will be compared to find the test

case having minimum residual coverage. Since t9 and t10 have minimum resCov so any

of them can be selected randomly. t9 will be selected.

In step 3.3 the data will be updated again as follow:

PrT: {t8, t9}

T’ = {t1, t2, t3, t4, t5, t6, t7, t10}

entitiesCov = {1, 5, 6, 11, 15, 19, 20}

Since the entitiesCov and T‟ are not empty thus the process will continue and step 3 will

be repeated again until any of them becomes empty.

In step 4, the algorithm will yield the following prioritized list:

Mutation Based Priority List (PrT): {8, 9, 1, 5, 6, 7, 10, 2, 3, 4}

In the end, we will compare our prioritization technique with already existing white box

prioritization technique. Since the branch coverage is the strongest prioritization

approach we will use it for comparison.

28

Chapter 4 : Implementation

This chapter includes the implementation details of the proposed solution. For

implementation, we have used MuCap to automate the process. The tool has three main

components. First component automates the process of mutation testing, second

component generates, executes the test cases, generates and displays report and third

component prioritizes test cases based on the report produced by second component using

greedy prioritization algorithm explained in previous chapter. The tool has been created

using Netbeans IDE 8.2 and Java language.

The architecture of the tool is given below in figure 4.1:

Mutants

Generation

Prioritization

Algorithm

Test case

Generation

and execution

Source

Code
Mutant operator

Mutants

Test cases to

Mutants

mapping

Mutation based

priority list

29

Figure 4.1: MuCap

The detailed architectural diagrams of each component are given below in Figure 4.2, 4.3

and 4.4 which show all the process involved in each component.

Figure 4.2: Architecture diagram of mutant generator

Source

Code

Mutation

Operator

Selection

Mutant

Generation
Mutants

Mutant

operator

Test Case

Generation

Boundary

Values

for

variables

Test Suite

Test Suite

Execution

Test

Execution

Traces

Report

Generation
Test cases to Mutants

mapping

Analyze/

calculate

BV

Min,

min+,

nom,

max-,

max

values

Mutants

Source

Code

30

Figure 4.3: Architecture diagram of test suite generator and executer

Figure 4.4: Architecture diagram of test suite prioritization

4.1 Implementation details

This section includes the implementation details of all three components of mutation

testing tool. It describes all the classes and their methods used for each of the component.

Class diagram of Mutation Testing Tool has been divided into two parts: The first

diagram is of the mutant generation component. The second diagram shows the second

component

The class diagrams of first and second components are shown below in Figure 4.5 and

Figure 4.6 respectively:

4.1.1 Mutant Generation

This module has been implemented using 16 main classes: the first class is the controller

class and other classes are for mutation operators.

 Mutation Operator Classes: For each operator, separate classes have been defined

and different methods have been used that perform certain tasks according to

requirements. For example, in ROR, the main method call_ROR(), is created to find

the relational operator in the program and replace it with other 5 relational operators

and whole condition with „true‟ and „false‟ values one by one. Similarly, in AOR, the

main method that has been created finds the basic arithmetic operator and replaces it

with other 4 arithmetic operators.

Prioritization

Algorithm

Mutation based

priority list

Test cases to

Mutants mapping

Test Suite

31

 Controller Class: In this module controller class has also been used that performs the

main functionality. It has 15 main methods for 15 mutation operators, as shown in

above class diagram, which are responsible for generating separate files for the

mutants created by applying selected operator. When the user selects a mutation

level operator, the controller class creates two objects, one for calling method level

mutation operator class and other for calling one of the 15 methods of controller

class according to the selection of mutation operator. For example, if the user selects

ROR from the list of operators, then the controller class will create an object which

will call call_ROR() method of ROR class to generate mutants of the program, the

other object will be used to call the ROR_Mutants() method of controller class

which will generate text files for storing each mutant generated against ROR

separately named as Mutant 01, Mutant 02 and so on in the project‟s folder.

4.1.2 Test Case Execution

This module has 5 different classes for 5 different functionalities.

 GetBoundary: In this class, the main method which performs the core functionality

is readFunctionParametersFile(). This method is responsible for getting the

boundary values for each variable in the source program from the text boxes of user

interface and generating other three values including min+, nom, max- for all

variables. It also stores

 BoundaryConfirmation: In this class, method createTestCases() is responsible for

carrying out main functionality. This method is used to create test cases by using

worst case boundary value testing technique which generates test cases by making all

the combinations of all 5 values for all variables, so for „n‟ variables there will be 5
n

test cases (Jorgensen, 2010). Test cases after creation are stored in a text file for later

use.

 Execute_Test_Cases: This class has four main methods for performing main

functionalities. The first method executeTestCases() is used to read each test case

one by one from test cases‟ text file and then the method writes this test case in

32

original program and in each mutant one by one. A programming logic is used to

find the exact location in original program and in mutants, where the function calling

statement is written. When location of function call in a code file is found then the

test case is written within the parameters of that function and then this file is saved

with .java extension. The second method used is compileProgram() which is

responsible for compiling the .java file created by the previous method. The class file

generated is then given to executeClassFile() for execution. The fourth method

programOutput() is used to store the output of original program and mutants against

each test case in a text file.

 GenerateReport: For report generation, the main method comparison() has been

implemented using a programming logic which reads file in which the outputs of

original program and all mutants are written. Then a comparison is made to find out,

against each test case, the number of killed mutants. If the output of mutant is

different than the original program against a particular test case then the mutant is

said to be killed. The other method shortReport() is used to save each test cases with

the mutants killed by it in a text file.

 DisplayReport: this class has different methods for displaying the report in the form

of a table. The method findNoOfKilledMutants() is used to find the total number of

mutants killed by the test suite. Methods populateTable() and setRowsinTable() are

used to generate table by setting columns and rows respectively. setRowsinTable(

)reads the report file and fills in the rows with test cases and its killed mutants.

4.1.3 Prioritizing Test Cases

The report generated by the previous tool will be used as an input to the program which is

the coverage information of all the test cases. Based on this information, the prioritization

algorithm which has already been discussed in the previous chapter will be used to assign

priorities to the test cases. The algorithm will select a test case which kills the maximum

number of mutants and will assign the highest priority to that test case, after that the

coverage information will be updated to indicate mutants left unkilled. The algorithm will

33

then find the residual coverage of all the test cases for assigning priorities until all the

mutants have been covered or the test suite has no unprioritized test case left.

Figure 4.5: Class diagram of mutant generator

34

Figure 4.6: Class diagram of test suite generator and executer

4.2 User interfaces

This section includes all the user interfaces of the mutation testing tool.

4.2.1 Mutant Generation

The first step in this system is to submit a .java file of the program for which mutants are

to be generated, this program can either be selected from already available list of

programs or by browsing it from other location, the tool also provides an option of

deleting file. The user interface is shown in Fig 4.7.

class mtt

javax.swing.JFrame

BoundaryConfirmation

- jButton1: javax.swing.JButton

- jButton2: javax.swing.JButton

- jLabel1: javax.swing.JLabel

- jLabel2: javax.swing.JLabel

- jLabel3: javax.swing.JLabel

- jLabel4: javax.swing.JLabel

- jLabel6: javax.swing.JLabel

- jLabel8: javax.swing.JLabel

- jPanel4: javax.swing.JPanel

- jPanel6: javax.swing.JPanel

- jScrollBar1: javax.swing.JScrollBar

- jScrollPane1: javax.swing.JScrollPane

- jTable1: javax.swing.JTable

~ mainCounter: int = 0

~ maxCounter: int = -1

~ maxMinusArray: String ([]) = new String[20]

~ maxMinusCounter: int = -1

~ maxValArray: String ([]) = new String[20]

~ minCounter: int = -1

~ minPlusArray: String ([]) = new String[20]

~ minPlusCounter: int = -1

~ minValArray: String ([]) = new String[20]

~ nomCounter: int = -1

~ nominalArray: String ([]) = new String[20]

~ variableArray: String ([]) = new String[20]

~ variableArraySize: int = -1

+ BoundaryConfirmation()

~ createTestCases(int): void

- initComponents(): void

- jButton1ActionPerformed(java.awt.event.ActionEvent): void

- jButton1MouseClicked(java.awt.event.MouseEvent): void

- jButton2MouseClicked(java.awt.event.MouseEvent): void

+ main(String[]): void

~ populateTable(): void

~ setNoOfTestCases(): void

~ setValuesInArray(): void

~ setValuesInTable(): void

~ setVariablesInTable(): void

javax.swing.JFrame

DisplayReport

- jLabel1: javax.swing.JLabel

- jLabel2: javax.swing.JLabel

- jLabel3: javax.swing.JLabel

- jLabel6: javax.swing.JLabel

- jLabel8: javax.swing.JLabel

- jPanel1: javax.swing.JPanel

- jPanel4: javax.swing.JPanel

- jPanel6: javax.swing.JPanel

- jScrollPane1: javax.swing.JScrollPane

- jTable1: javax.swing.JTable

+ DisplayReport()

~ findNoOfKilledMutants(): void

- initComponents(): void

+ main(String[]): void

~ populateTable(): void

~ setRowsInTable(): void

javax.swing.JFrame

Execute_Test_Cases

~ className: String = ""

~ colourCounter: int = 0

+ counter: int = -1

- jButton1: javax.swing.JButton

- jButton2: javax.swing.JButton

- jLabel4: javax.swing.JLabel

- jLabel5: javax.swing.JLabel

- jLabel6: javax.swing.JLabel

- jLabel8: javax.swing.JLabel

- jPanel1: javax.swing.JPanel

- jPanel3: javax.swing.JPanel

- jPanel4: javax.swing.JPanel

- jPanel6: javax.swing.JPanel

- jProgressBar1: javax.swing.JProgressBar

- jScrollBar1: javax.swing.JScrollBar

- jScrollPane1: javax.swing.JScrollPane

- jScrollPane5: javax.swing.JScrollPane

- jScrollPane6: javax.swing.JScrollPane

- jScrollPane7: javax.swing.JScrollPane

- jTextArea1: javax.swing.JTextArea

- jTextArea2: javax.swing.JTextArea

- jTextArea3: javax.swing.JTextArea

- jTextArea4: javax.swing.JTextArea

~ main_counter: int = -1

~ pakVar: int = 1

+ testCase: String = ""

~ testCaseCounter: int = 0

+ totalNoOfMutants: int = 0

~ updateThread: Thread = null

~ valueOfProgressBar: int = 0

~ complieProgram(): void

+ createFile(): void

+ displayTestCases(): void

+ Execute_Test_Cases()

- executeClassFile(String): void

~ executeTestCases(String): void

+ getClassName(): void

~ getTestCase(): void

~ getTotalNoOfMutants(): void

- initComponents(): void

- jButton1ActionPerformed(java.awt.event.ActionEvent): void

- jButton1MouseClicked(java.awt.event.MouseEvent): void

- jButton1MousePressed(java.awt.event.MouseEvent): void

- jButton2ActionPerformed(java.awt.event.ActionEvent): void

- jLabel5MouseClicked(java.awt.event.MouseEvent): void

- jLabel5MousePressed(java.awt.event.MouseEvent): void

+ main(String[]): void

+ programOutput(String, InputStream): void

+ setMutantNo(): void

+ setRemainingMutantNo(): void

+ setTestCaseExectionStatus(): void

+ writeMutantNo(int): void

+ writeTestCaseExecutionStatus(): void

javax.swing.JFrame

GenerateReport

~ noOfKilledMutants: int = 0

~ noOfLiveMutants: int = 0

~ totalNoOfMutants: int = 0

+ comparison(): void

+ GenerateReport()

- initComponents(): void

+ main(String[]): void

~ shortReport(): void

javax.swing.JFrame

GetBoundary

~ abc: int = 1

~ bw: BufferedWriter = null

~ countNoOfLines: int = 0

~ functionLineEnd: int = 0

- jButton1: javax.swing.JButton

- jLabel1: javax.swing.JLabel

- jLabel2: javax.swing.JLabel

- jLabel3: javax.swing.JLabel

- jLabel4: javax.swing.JLabel

- jLabel6: javax.swing.JLabel

- jLabel8: javax.swing.JLabel

- jPanel2: javax.swing.JPanel

- jPanel4: javax.swing.JPanel

- jPanel6: javax.swing.JPanel

~ maxInput: int = 0

- maxVal: javax.swing.JTextField

~ minInput: int = 0

- minVal: javax.swing.JTextField

~ nom: int = 0

~ noOfVar: int = 0

~ permission: int = 1

~ permissionVar: int = 1

~ perVar: int = 0

~ secondCount: int = 0

- submitBtn: javax.swing.JButton

~ totalInput: int = 0

- variableName: javax.swing.JLabel

~ varPer: int = 0

~ calculateRows(): void

+ GetBoundary()

+ infoBox(String, String): void

- initComponents(): void

- jButton1MouseClicked(java.awt.event.MouseEvent): void

+ main(String[]): void

~ readFunctionParametersFile(): void

~ setTotalNoOfVariables(): void

- submitBtnMouseClicked(java.awt.event.MouseEvent): void

~ totalInput(): void

35

Figure 4.7: Source Code Selection

When the program is submitted to the system, a list of method level mutation operator

appears in front of the user from which atleast one operator needs to be selected for

generating mutants. User can also select multiple or all operators and submit it to the

system. The user interface of this step is given in Fig 4.8.

Figure 4.8: Mutation Operator Selection

36

Upon the selection of the mutation operator, this operator is applied on source code and

mutants are generated and a user interface, as shown in Fig 4.9, is displayed which

contains the summary of mutants‟ generation. It also provides an option of viewing

mutants one by one by selecting a mutant and submitting it. If user clicks on „Test Cases‟

button then the interface for the second module will open up.

Figure 4.9: Mutants‟ Generation Summary

4.2.2 Test case Execution

The second module of the system is used to generate and execute test suite. For

generating test suite, system takes the min and max values for each variable from user

through a user interface which is shown in Figure 4.10.

After the submission of boundary values for all variables, the system will ask the user for

confirmation of boundary values as shown in Figure 4.11. If user clicks on proceed then

next window will open.

The system will display test cases with an option of test cases execution as shown in

Figure 4.12.

37

Figure 4.10: Taking Boundary values

Figure 4.11: Displaying all five values

38

Figure 4.12: Displaying test cases

If user clicks chooses to execute test cases, then the execution will begin and the

execution status will be displayed on the user interface as shown in Figure 4.13.

Figure 4.13: Execution of test cases

39

After the execution of all test cases on all mutants, the system will display the final report

in the form of a table as shown in Figure 4.14.

Figure 4.14: Test cases to mutants mapping

40

Chapter 5 : Results and Discussion

In this chapter, we have discussed experiments‟ results which we have performed on

different subject programs. By using ROR mutation operator, we generated mutants of

the original program and then using the data of test cases to mutants mapping, we

generated mutation based prioritized list for each program. The existing criteria which we

have used for comparison is Additional Branch Coverage since it is considered to be

strongest prioritization technique. Both of the techniques including mutation based

prioritization and branch coverage based prioritization are then compared using APFD.

For evaluating our technique, we have used three different programs. For selection of

subject programs, different sources were searched including open source project

repositories, and SIR (Software Infrastructure Repository). Since our proposed

prioritization technique applies on method level, we looked for reasonably sized methods

in the repositories. However, even in larger projects, the methods were either not too

complex or had few lines of code. Therefore, we selected the subject programs from

software testing literature, as these programs are good examples for application of

software testing techniques. The source codes of these programs are given as an input to

the tool described in Chapter 4 to generate mutants using ROR operator and for execution

of original and mutant programs using the test suite generated by Worst case boundary

value analysis. The data generated is then given to the prioritization algorithm for

generating prioritization lists. Branch coverage information is also collected for each

program using its respective test suite and branch coverage based prioritization lists are

also generated.

5.1 Subject programs

We have used Triangle problem, Commission problem and Date problem as subject

programs for evaluating our approach. A brief description of each program is given

below (Jorgensen, 2010):

41

 Triangle problem: Triangle program takes three input variable a, b and c which

represents the sides of a triangle. The input variables must satisfy the following

conditions:

C1. a < b + c

C2. b < a + c

C3. c < a + b

There are three types of triangle which are equilateral, Isosceles and Scalene.

Triangle problem returns the type of the triangle on the basis of input variables‟

values if the above conditions are satisfied. If these values do not meet any of the

above conditions then the program returns “Not a Triangle” as an output.

 Commission problem: Locks, stocks and barrels made by a gunsmith were sold by

a salesperson. The price of lock is $45, $30 for stock, $25 for barrels. Atleast one

lock, one stock and one barrel were to be sold per month by the salesperson and

maximum of 70 locks, 80 stocks and 90 barrels per month. After visiting each town,

the salesperson sent a telegram to gunsmith informing him about the number of

locks, stocks and barrels sold in that town. At the end of the month, the gunsmith

calculated salesperson‟s commission as: 10% commission on sales up to $1000, 15%

on the next $800, and 20% on any sales in excess of $1800.

 Date problem: Date problem takes three input: month, day and year and based on

the current date calculates the next date. In case of February, 28, the date program

checks whether the year is a leap or non leap year and calculates the date

respectively.

The source codes of these programs are given in appendix A. Different characteristics of

these subjects programs are given below in Table 5.1.

For each decision in the program, 7 mutants are generated. Since switch statement is used

in Date program, thus the number of relational operators is reduced leaving behind less

number of mutants.

42

Table 5.1: Subject Programs summary

Program

LOC No. of

inputs

No. of

decisions

No. of

mutants

using

ROR

No. of

branches

1. Triangle Problem 80 3 13 91 26

2. Commission

problem

46 3 2 14 4

3. Date problem

80 3 20 63 40

For each of these programs, two priority lists are generated, one is branch coverage based

and other is mutation based priority list, using the data given in appendix B where each

program‟s data is given in tabular form. The first column of the tables shows the mutants

killed by each test case, second column indicates the total number of mutants killed, third

column lists all the branches covered by each test case, forth column shows the total

number of branches covered and last column indicates the errors detected by each test

case used for APFD calculation. Table 5.2 shows both priority lists for all 3 programs.

Table 5.2: Subject Programs‟ Priority Lists

43

44

5.2 Comparison

Both of the prioritization techniques are then compared using APFD; which is the

standard criteria for evaluation of prioritization techniques. For APFD calculation, we

seeded the faults in the original program using mutation since the mutation faults are the

representative of real faults. Hand seeded faults can be problematic for validity of results

(Do et al., 2005).

We have used AORB (Arithmetic Operator Replacement Binary) mutation operator for

generating such faulty versions of the program. Errors detected by test cases are shown in

column 5 of the each program‟s tables given in appendix B. APFD is calculated using

following formula:

𝐴𝑃𝐹𝐷 = 1−
𝑇𝐹1 +⋯… . .𝑇𝐹𝑚

𝑛𝑚
+
1

2𝑛

Where T is the test suite containing n test cases and F is the set of m faults revealed by T.

For ordering T‟, let TFi be the order of the first test case that reveals the ith fault. For

APFD calculation, only those faults which are detected by the test suite are considered

and undetected faults are ignored.

For example, consider the Triangle problem where:

F= {5, 6, 7, 8, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48}

n= 125; m= 36

45

𝐴𝑃𝐹𝐷 = 1 −
3 + 3 + 3 + 3 + 4 + 4 + 4 + 4 + 59 + 59 + 2 + 2 + 2 +⋯+ 4 + 2 + 2 + 2

125(36)

+
1

2(125)

𝐴𝑃𝐹𝐷 = 1 −
328

4500
+

1

250

𝐴𝑃𝐹𝐷 = 93.11%

Using this data APFD for mutation based prioritization for Triangle problem will be

calculated.

APFDs of all three programs for both prioritization techniques are given below.

Table 5.3: Subject Programs‟ APFD

Program

No. of

test

cases

No. of

faults

seeded

No. of

faults

detected

APFD for

mutation

based

prioritization

APFD for

branch

coverage

prioritization

1. Triangle

Problem

125 48 36 93.11% 92.51%

2. Commission

Problem

125 68 58 99.39% 99.39%

3. Date Problem 125 40 24 96.93% 85.86%

For triangle problem, the difference between APFDs is only 0.6% because both priority

lists include almost identical test cases with their positions varying. In mutation based

priority list the test case t32 is given the highest priority because of its highest fault

exposing potential, but in branch based priority list t32 is on 6
th

 position and out of 36

errors 8 are detected by t32. Since t32 in both priority lists is among higher priority test

cases with small difference between its positions in both lists, thus the difference between

both APFDs is only 0.6%.The graphical representation of fault detection of test cases for

triangle problem is given below in Figure 5.1.

46

Figure 5.1: Graphical representation of fault detection of test cases for Triangle Problem

In commission problem, the number of branches and number of mutants are less than the

other two example programs. Only two test cases are sufficient to kill all mutants and

cover all branches. The test case that kills the maximum number of mutants covers the

maximum number of branches as well, making both the prioritized lists exactly same, so

there is no difference between both APFDs. The graphical representation of fault

detection of test cases for commission problem is given below in Figure 5.2.

In case of date program, there is a more than 10% difference between the APFDs of both

lists because of two test cases, i.e., t107 and t85. In mutation based priority list t107 is

given highest priority and t85 in given 6
th

 priority but in branch based priority they both

are treated as redundant test cases. Out of 24 errors used for APFD calculation, 4 are

detected only by t107 and t82, but in branch based priority list t107 is among redundant

test cases and among the highest priority test cases t82 is given the lowest priority. The

other 4 errors are detected only by t85 but in branch based priority list it is among the

redundant test cases, which makes the APFD of mutation based prioritization much

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60

P
er

ce
n

ta
g

e
o

f
fa

u
lt

s
d

et
ec

te
d

No. of Test Cases

No. of Test cases required to detect AORB faults

Triangle_Mutation

Triangle_Branch

47

higher than the branch based prioritization. The graphical representation of fault detection

of test cases for date problem is given below in Figure 5.3.

Figure 5.2: Graphical representation of fault detection of test cases for Commission

problem

Figure 5.3: Graphical representation of fault detection of test cases for Date problem

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18 20 22 24P
er

ce
n

ta
g
e

o
f

fa
u

lt
s

d
et

ec
te

d

No. of Test Cases

No. of Test cases required to detect

AORB faults

Commission_Mutation

Commission_Branch

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90

P
er

ce
n

ta
g
e

o
f

fa
u

lt
s

d
et

ec
te

d

No. of Test Cases

No. of Test cases required to detect

AORB faults

Date_Mutation

Date_Branch

48

By comparing the APFD of mutation based prioritization with branch coverage based

prioritization, it can be concluded that it is clearly higher than the latter.

In coverage based prioritization, the assumption used is that coverage will maximize the

fault detection rate, but from the above results, it can be seen that this assumptions does

not always hold. The test cases which have higher fault detection potential can be given

low priorities or they can be treated as redundant test cases. Since the mutation based

prioritization assigns priorities to test cases based on their fault detection ability, thus it

performs better than coverage based prioritization techniques in terms of APFD.

49

Chapter 6 : Conclusion and Future Work

After reviewing literature, we concluded that topic of test suite prioritization is of

increasing importance because of it reducing the cost of regression testing. A lot of work

has been done in this field and significant results have been achieved. To overcome the

drawbacks of other regression techniques, test case prioritization is more commonly used.

Through the detailed literature survey and experimentation, we are able to answer our

research questions described in Chapter 1 as follows:

RQ. 1: What are the existing and most commonly used test case prioritization

techniques?

A number of white box and black box prioritization techniques have been proposed to

solve the problem of test suite prioritization. White box techniques use code coverage

information for prioritization while black box techniques use specification in order to

prioritize test cases. We have also seen that white box prioritization techniques,

specifically those proposed by Rothermel et al. (2001) including branch, statement and

function coverage based, are more commonly used than black box prioritization. Many

black box prioritization techniques are also highly effective and competitive, and the

difference between the APFDs of black box and white box techniques ranges from 2% to

5%, yet they are not commonly used because of the lack of structural information.

Overall, White box prioritization techniques outperform black box prioritization

techniques in 50 to 60% cases.

RQ. 2: What are the gaps in the existing prioritization techniques?

Although existing prioritization techniques perform well, but most of these prioritization

techniques are not fault based techniques. They all prioritize test suites based on some

coverage criteria including assuming that the coverage will maximize rate of fault

detection. There are only few prioritization techniques which are fault based including

50

total FEP and additional FEP. FEP based techniques use fault detection probability of test

cases in order to prioritize them which cannot be calculated accurately.

RQ. 3: How well does the mutation based prioritization technique compare with the well

studied white box and black box prioritization techniques in terms of rate of fault

detection?

The technique proposed in this research work involves the simple use of mutation testing

in order to prioritize the test cases based on the number of additional mutants killed. The

test case that exposes the maximum number of faults in the original program is given

highest priority. Using three different subject programs, we generated priority lists for

both mutation and branch coverage and we concluded that the test case that exposes

maximum number of faults was given lower priority in branch coverage which is the

major drawback of the technique. Mutation based prioritization addressed this drawback

and assigned higher priorities to those test cases. The main objective of the proposed

technique was to increase the average percentage of fault detection (APFD) of test suite.

After generating the mutation based prioritization list, we have seen that the APFD of our

proposed technique is more than the strongest coverage based prioritization technique

which is branch coverage. The difference between the APFDs of branch coverage and

mutation based coverage ranges from 0.5 to 11%.

6.1 Future work

After successful experimentation of the proposed technique using ROR operator, we plan

to use more mutation operators for prioritization of test suite in near future. More than

one mutation operator can also be used together to generate more than errors in each

faulty version. Moreover, mutation testing can also be combined with some existing

coverage based techniques by which we can solve the problem of random selection in

case of tie. Mutation testing can be used as primary criteria for prioritization and in case

of tie between test cases, we can use the coverage information of those test cases as a

secondary criteria and the test case that achieves the maximum coverage can be assigned

51

higher priority instead of random selection. We also plan to perform experiments with

larger case studies.

52

References

Arafeen, M. J., Do, H. (2013). Test case prioritization using requirements based

clustering. International Conference on Software Testing. IEEE Computer Society

Press, pp, 312–321.

Baresi,L., Pezze, M. (2006). An introduction to software testing. Electronic Notes in

Theoretical Computer Science, vol.148, pp, 89-111.

Bryce, R. C., Memon, A. M. (2007). Test suite prioritization by interaction coverage.

Proceedings of the Workshop on Domain Specific Approaches to Software Test

Automation (DOSTA), ACM, pp, 1–7.

Burnstein, I. (2003). Practical software testing: a process-oriented approach. Springer-

Verlag, New York, Inc.

Chen, T.Y., Lau, M.F. (1996). Dividing strategies for the optimization of a test suite.

Information Processing Letters, 60(3), pp, 135– 141.

Do, H., Rothermel, G. (2005). A controlled experiment assessing test case prioritization

techniques via mutation faults. Proceedings of the 21st IEEE International Conference

on Software Maintenance (ICSM). IEEE Computer Society Press, pp, 411–420.

Do, H., Rothermel, G. (2006). On the use of mutation faults in empirical assessments of

test case prioritization techniques. IEEE Transactions on Software Engineering, 32(9),

pp, 733–752.

Elbaum, S.G., Malishevsky, A.G., Rothermel, G.(2001). Prioritizing test cases for

regression testing. Proceedings of International Symposium on Software Testing and

Analysis (ISSTA 2000), ACM Press, 2000; 102–112.

Elbaum, S.G., Malishevsky, A. G., Rothermel, G. (2002). Test case prioritization: a

family of empirical studies. IEEE Transactions on Software Engineering, 28(2), pp,

159–182.

Fazlalizadeh,Y., Khalilian, A., Azgomi, M., Parsa,S. (2009). Prioritizing test cases for

resource constraint environments using historical test case performance data. 2nd IEEE

International Conference on Computer Science and Information Technology, pp, 190–

195.

Garey, M.R., Johnson, D.S. (1979). Computers and Intractability: A guide to the theory

of NP-Completeness. W. H. Freeman and Company: New York, NY.

53

Github, www.github.com

Harrold, M.J. (1999). Testing evolving software. The Journal of Systems and Software,

47(2–3), pp, 173–181.

Harrold, M.J., Gupta, R., Soffa, M.L. (1993). A methodology for controlling the size of a

test suite. ACM Transactions on Software Engineering and Methodology, 2(3), pp,

270–285.

Henard, C., Papadakis, M., Harman, M., Jia, Y. and Traon, Y.L. (2016). Comparing

White-box and Black-box Test Prioritization. In Proceedings of the 38th International

Conference on Software Engineering (ICSE). ACM.

Horgan, J., London, S. (1992). ATAC: A data flow coverage testing tool for c.

Proceedings of the Symposium on Assessment of Quality Software Development

Tools, IEEE Computer Society Press, pp, 2–10.

Jorgensen, P.C. (2010). Software Testing: A Craftsman‟s Approach. 2
nd

 Edition. Boca

Raton, FL: CRC Press. ISBN: 13: 978-1-4665-6069-7.

Kaur,A., Goyal,S. (2011). A genetic algorithm for regression test case prioritization using

code coverage. International Journal of Advanced Trends in Computer Science and

Engineering.

Kim, J., Porter, A. A. (2002). A history-based test prioritization technique for regression

testing in resource constrained environments. Proceedings of the 24th International

Conference on Software Engineering (ICSE), ACM Press, pp, 119–129.

Kumar, H., Pal, V., Chauhan, N. (2013). A hierarchical system test case prioritization

technique based on requirements. 13th Annual International Software Testing

Conference, pp, 4–5

Leung, H.K.N., White, L. (1989). Insight into regression testing. Proceedings of

Interntional Conference on Software Maintenance (ICSM), IEEE Computer Society

Press, pp, 60–69.

Li, Z., Harmanand, M., Hierons, R. (2007). Search Algorithms for Regression Test Case

Prioritization. Proceedings of IEEE Transactions on Software Engineering, Vol. 33, pp,

225-237.

54

Lin, S. (1965). Computer Solutions of the Travelling Salesman Problem. Bell System

Technical Journal, pp, 2245-2269.

Ma, Y. S., Offutt, A. J., Kwon, Y. R. (2006). MuJava: A Mutation System for Java.

Proceedings of the 28th international Conference on Software Engineering (ICSE),

IEEE Computer Society Presspp. 827–830.

Maheswari,R. U., Mala, D. J. (2015). Combined Genetic and Simulated Annealing

Approach for Test Case Prioritization. Indian Journal of Science and Technology, Vol

8(35).

Marre, M., Bertolino, A. (2003). Using spanning sets for coverage testing. IEEE

Transactions on Software Engineering; 29(11), pp, 974–984.

Offutt, A. J., Pan, J., Voas, J. (1995). Procedures for reducing the size of coverage-based

test sets. Proceedings of the 12
th

International Conference on Testing Computer

Software, ACM Press, pp, 111–123.

Offutt, A. J., Rothermel, G., Zapf, C. (1993). An experimental evaluation of selective

mutation. Proceedings of the 15th International Conference on Software Engineering,

pp, 100–107. IEEE Computer Society Press.

Qu, B., Nie, C., Xu, B., Zhang, X. (2007). Test case prioritization for black box testing.

In Computer Software and Applications Conference, pp. 465–474.

Rothermel, G, Harrold M.J. (1994). A framework for evaluating regression test selection

techniques. Proceedings of the 16th International Conference on Software Engineering

(ICSE), IEEE Computer Society Press, pp, 201–210.

Rothermel, G. Untch, R.H., Chu, C., Harrold, M.J. (1999). Test case prioritization: An

empirical study. Proceedings of International Conference on Software Maintenance

(ICSM), IEEE Computer Society Press, pp, 179–188.

Software Infrastructure Repository, www.sir.unl.edu

Srikanth, H., Williams, L., Osborne,J. (2005). Towards the Prioritization of system test

cases. North Carolina State University TR-44.

Srivastava, P. R. (2008). Test Case prioritization. Journal of Theoretical and Applied

Information Technology (JATIT), BITS Pilani, India333031.

Wong, W. E., Horgan, J. R., London, S., Agrawal, H. (1997). A study of effective

regression testing in practice, Proceedingsofthe8th International Symposium on

Software Reliability Engineering (ISSRE), IEEE Computer Society, pp, 264–275.

55

Yoo, S., Harman, M. (2012). Regression testing: minimization, selection and

prioritization: A survey. Software Testing, Verification and Reliability, 22(2), pp, 67–

120.

56

Appendix A: Source Codes of example programs

Source codes of examples programs:

Triangle Program:

public class TriangleProbelm {

 String newline = System.getProperty("line.separator");

 public void triangle(int a,int b,int c){

 int match=0,d,e;

 if(a==b)

 match = match - match + 1;

 if(a==c)

 match= match - match + 2;

 if(b==c)

 match= match - match + 3;

 d = a + b;

 e = b + c;

 if(match==0)

 {

 if(d<=c)

 {

 System.out.println(a+" "+b +" "+c);

 System.out.print("NOT A TRIANGLE" +newline);

 }

 else if(e<=a)

 {

 System.out.println(a+" "+b +" "+c);

 System.out.print("NOT A TRIANGLE" +newline);

 }

 else if (a + c <= b)

 {

 System.out.println(a+" "+b +" "+c);

 System.out.print("NOT A TRIANGLE" +newline);

 }

 else

 {

 System.out.println(a+" "+b +" "+c);

 System.out.println("Scalane" +newline);

 }

 }

 else if(match==1){

 if (a + c <= b)

 {

 System.out.println(a+" "+b +" "+c);

 System.out.println("NOT A TRIANGLE" +newline);}

 else

 {

 System.out.println(a+" "+b +" "+c);

 System.out.println("Isoscles" +newline);

 }

57

 }

 else if (match==2){

 if(a + c <= b)

 {

 System.out.println(a+" "+b +" "+c);

 System.out.print("NOT A TRIANGLE" +newline);

 }

 else

 {

 System.out.println(a+" "+b +" "+c);

 System.out.print("Isoscles" +newline);

 }

 }

 else if(match==3){

 if(b + c <= a)

 {

 System.out.println(a+" "+b +" "+c);

 System.out.print("NOT A TRIANGLE" +newline);

 }

 else

 {

 System.out.println(a+" "+b +" "+c);

 System.out.print("Isoscles" +newline);

 }

 }

 else

 {

 System.out.println(a+" "+b +" "+c);

 System.out.println("Equilaterial" +newline);

 }

 }

 }

Commission Problem:

public class Commission {

 String newline = System.getProperty("line.separator");

 public void commission(int locks, int stocks, int barrels){

 int totalLocks,totalStocks,totalBarrels;

 double lockPrice, stockPrice, barrelPrice;

 double lockSales, stockSales, barrelSales, sales, commission;

 lockPrice = 45.0;

 stockPrice = 30.0;

 barrelPrice = 25.0;

 totalLocks = 0;

 totalStocks = 0;

 totalBarrels = 0;

 totalLocks = totalLocks + locks;

 totalStocks = totalStocks + stocks;

 totalBarrels = totalBarrels + barrels;

 System.out.println("Locks sold:" +totalLocks);

 System.out.println("Stocks sold:" +totalStocks);

 System.out.println("Barrels sold:" +totalBarrels);

 lockSales = lockPrice * totalLocks;

 stockSales = stockPrice * totalStocks;

58

 barrelSales = barrelPrice * totalBarrels;

 sales = lockSales + stockSales + barrelSales;

 System.out.println("Total Sales:" +sales);

 if(sales > 1800.0) //1

 {

 commission = 0.10 * 1000.0;

 commission = commission + 0.15 * 800.0;

 commission = commission + 0.20 * (sales - 1800.0);

 }

 else if (sales > 1000.0) //2

 {

 commission = 0.10 * 1000.0;

 commission = commission + 0.15 * (sales - 1000.0);

 }

 else

 {

 commission = 0.10 * sales;

 }

 System.out.println("Commission:" +commission +newline);

 }

 public static void main(String[] args)

 {

 Commission object=new Commission();

 object.commission(1, 1, 1);

 }

 }

Date Problem:

public class nextdate {

 public void nextday(int day,int month,int year){

 int tomorrowDay =

day,tomorrowMonth=month,tomorrowYear=year;

 boolean leapyear;

 leapyear= ((year % 4 == 0) && (year % 100 != 0 || year %

400 == 0));

 switch(month)

 {

 case 1: case 3: case 5: case 7: case 8: case 10:

 if (day < 31)

 {

 tomorrowDay = day + 1;

 }

 else

 {

 tomorrowDay = 1;

 tomorrowMonth = month + 1;

 }

 break;

 case 4: case 6: case 9: case 11:

 if (day < 30)

 {

 tomorrowDay = day + 1;

 }

 else

59

 {

 tomorrowDay = 1;

 tomorrowMonth = month + 1;

 }

 break;

 case 12:

 if(day < 31)

 {

 tomorrowDay = day + 1;

 }

 else

 {

 tomorrowDay = 1;

 tomorrowMonth = 1;

 tomorrowYear = year + 1;

 }

 break;

 case 2:

 if (day < 28)

 {

 tomorrowDay = day + 1;

 }

 else if(day == 28)

 {

 if (leapyear)

 tomorrowDay = 29;

 else

 {

 tomorrowDay = 1;

 tomorrowMonth = 3;

 }

 }

 else

 {

 if (day == 29)

 {

 if(leapyear)

 {

 tomorrowDay = 1;

 tomorrowMonth = 3;

 }

 else

 System.out.println("February

cannot have days" +day);

 }

 }

 break;

 }

 System.out.printf("Date is:" +tomorrowDay + "-" +tomorrowMonth

+ "-" +tomorrowYear);

}

 public static void main(String[] args)

 {

 nextdate object=new nextdate();

60

 object.nextday(1,1,1);

 }

}

Appendix B: Test data for example programs

Test data for example programs:

Triangle Problem

Test case Mutants killed Cov(t)

for

Mutants

Branches covered Cov(t)

for

branches

Errors detected

t1 1,3,5,6,8,10,12,13,15,

17,19,20,22,23,26,28,29,

30,33,35

20 2,4,6,7,9 5

t2 1,3,5,6,8,10,12,13,15,

17,19,20,22,23,26,28,30,

31,32,35

20 2,4,6,7,9 5

t3 1,3,5,6,8,10,12,13,15,

17,19,20,22,23,26,28,30,

31,32,35

20 2,4,6,7,9 5

t4 1,3,5,6,8,10,12,13,15,

17,19,20,22,23,26,28,30,

31,32,35

20 2,4,6,7,9 5

t5 1,3,5,6,8,10,12,13,15,

17,19,20,22,23,26,28,30,

31,32,35

20 2,4,6,7,9 5

t6 15,16,19,21,23,25,26,27,

78,79,82,84,86,87,89,90

16 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,

48

t7 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,29,30,

33,35

20 2,4,6,7,9 5

t8 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5

t9 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5

t10 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5

t11 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,10,12,13 7

t12 15,16,19,21,23,25,26,27, 16 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,

61

78,79,82,84,86,87,89,90 48

t13 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,29,30,

33,35

20 2,4,6,7,9 5

t14 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5

t15 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5

t16 16,18,19,20,22,23,26,28,

30,31,33,34,37,38,40,41,

44,45,46,49

20 2,4,6,7,10,12,13 7

t17 16,18,19,20,22,23,26,28,

30,31,33,34,37,38,40,41,

44,45,46,49

20 2,4,6,7,10,12,13 7

t18 16,18,19,20,22,23,26,28,

30,31,33,34,37,38,40,41,

43,44,47,49

20 2,4,6,7,10,12,13 7

t19 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,29,

30,33,35

20 2,4,6,7,9 5

t20 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5

t21 16,18,19,20,22,23,26,28,

30,31,33,34,37,38,40,41,

44,45,46,49

20 2,4,6,7,10,12,13 7

t22 16,18,19,20,22,23,26,28,

30,31,33,34,37,38,40,41,

44,45,46,49

20 2,4,6,7,10,12,13 7

t23 16,18,19,20,22,23,26,28,

30,31,33,34,37,38,40,41,

44,45,46,49

20 2,4,6,7,10,12,13 7

t24 15,16,19,21,23,25,26,27,

78,79,82,84,86,87,89,90

16 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,

48

t25 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,29,30,

33,35

20 2,4,6,7,9 5

t26 1,2,5,7,23,25,26,27,50,

51,54,56,58,59,61,62

16 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t27 1,2,5,7,23,25,26,27,50,

51,54,56,58,59,61,62

16 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t28 1,2,5,7,23,25,26,27,50,

51,54,56,58,59,61,62

16 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t29 1,2,5,7,23,25,26,27,50,

51,54,56,58,59,61,62

16 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t30 1,2,5,7,23,25,26,27,50,

51,54,56,58,59,61,62

16 1,4,6,8,15,18 6 5,6,7,8,38,39,40

62

t31 15,16,19,21,23,25,26,27,

78,79,82,84,86,87,89,90

16 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,

48

t32 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,32,34,

35,36

t33 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,29,30,

33,35

20 2,4,6,7,9 5 25

t34 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5

t35 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5

t36 1,3,5,6,8,10,12,13,16,18,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t37 15,16,19,21,23,25,26,27,

78,79,82,84,86,87,89,90

16 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,

48

t38 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,32,

34,35,36

t39 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5 25

t40 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5

t41 16,18,19,20,22,23,26,28,

30,31,33,34,37,38,40,41,

44,45,46,49

20 2,4,6,7,10,12,13 7

t42 16,18,19,20,22,23,26,28,

30,31,33,34,37,38,40,41,

43,44,47,49

20 2,4,6,7,10,12,13 7 33

t43 1,3,5,6,8,10,12,13,16,18,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,3

4,35,36

t44 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,32,

34,35,36

t45 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,29,30,

33,35

20 2,4,6,7,9 5 25

t46 16,18,19,20,22,23,26,28, 20 2,4,6,7,10,12,13 7

63

30,31,33,34,37,38,40,41,

44,45,46,49

t47 16,18,19,20,22,23,26,28,

30,31,33,34,37,38,40,41,

44,45,46,49

20 2,4,6,7,10,12,13 7 33

t48 16,18,19,20,22,23,26,28,

30,31,33,34,37,38,40,41,

43,44,47,49

20 2,4,6,7,10,12,13 7 33

t49 15,16,19,21,23,25,26,27,

78,79,82,84,86,87,89,90

16 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,

48

t50 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,32,

34,35,36

t51 8,9,12,14,23,25,26,27,64

,65,68,70,72,73,75,76

16 2,3,6,8,16,19,22 7 13,14,15,16,42,43,

44

t52 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34, 36

t53 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,29,30,

33,35

20 2,4,6,7,9 5 25

t54 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5

t55 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5

t56 23,25,26,27,78,79,82,84,

86,87,89,90

12 1,3,5,8,16,20,23,26 8 17,20,21,22,23,24,

46,47,48

t57 1,2,5,7,23,25,26,27,50,

51,54,56,58,59,61,62

16 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t58 1,2,5,7,23,25,26,27,50,

51,54,56,58,59,61,62

16 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t59 1,2,5,7,23,25,26,27,50,

51,54,56,58,59,61,62

16 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t60 1,2,5,7,23,25,26,27,50,

51,54,56,58,59,61,62

16 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t61 8,9,12,14,23,25,26,27,64

,65,68,70,72,73,75,76

16 2,3,6,8,16,19,22 7 13,14,15,16,42,43,

44

t62 15,16,19,21,23,25,26,27,

78,79,82,84,86,87,89,90

16 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,

48

t63 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,32,34,

35,36

t64 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,29,30,

20 2,4,6,7,9 5 25

64

33,35

t65 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5 25

t66 16,18,19,20,64,65,68,70,

71,72,75,77

12 2,3,6,8,16,19,22 7 16,41

t67 1,3,5,6,8,10,12,13,16,18,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t68 1,3,5,6,8,10,12,13,16,18,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t69 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t70 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t71 16,18,19,20,64,65,68,70,

72,73,74,77

12 2,3,6,8,16,19,21 7 16,41

t72 16,18,19,20,22,23,26,28,

30,31,33,34,37,38,40,41,

43,44,47,49

20 2,4,6,7,10,12,13 7

t73 1,3,5,6,8,10,12,13,16,18,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t74 15,16,19,21,23,25,26,27,

78,79,82,84,86,87,89,90

16 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,

48

t75 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t76 2,4,5,6,9,11,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t77 8,9,12,14,23,25,26,27,64

,

65,68,70,72,73,75,76

16 2,3,6,8,16,19,22 7 13,14,15,16,42,43,

44

t78 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t79 2,4,5,6,8,10,12,13,15,17, 20 2,4,6,7,9 5 25

65

19,20,22,23,26,28,30,31,

32,35

t80 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5

t81 15,16,19,21,23,25,26,27,

78,79,82,84,86,87,89,90

16 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,

48

t82 8,9,12,14,23,25,26,27,

64,65,68,70,72,73,75,76

16 2,3,6,8,16,19,22 7 13,14,15,16,42,43,

44

t83 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t84 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,29,30,

33,35

20 2,4,6,7,9 5 25

t85 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5 25

t86 1,2,5,7,23,25,26,27,50,

51,54,56,58,59,61,62

20 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t87 23,25,26,27,78,79,82,84,

86,87,89,90

12 1,3,5,8,16,20,23,26 8 17,20,21,22,23,24,

46,48,49

t88 1,2,5,7,23,25,26,27,50,

51,54,56,58,59,61,62

16 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t89 1,2,5,7,23,25,26,27,50,

51,54,56,58,59,61,62

16 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t90 1,2,5,7,23,25,26,27,50,

51,54,56,58,59,61,62

16 1,4,6,8,15,18 6 5,6,7,8,38,39,40

t91 1,3,5,6,9,11,12,13,16,18,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t92 8,9,12,14,23,25,26,27,

64,65,68,70,72,73,75,76

16 2,3,6,8,16,19,22 7 13,14,15,16,42,43,

44

t93 1,3,5,6,8,10,12,13,16,18,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t94 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t95 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t96 16,18,19,20,22,23,26,28,

30,31,33,34,37,38,40,41,

20 2,4,6,7,10,12,13 7 33

66

43,44,47,49

t97 8,9,12,14,23,25,26,27,

64,65,68,70,72,73,75,76

16 2,3,6,8,16,19,22 7 13,14,15,16,42,43,

44

t98 1,3,5,6,8,10,12,13,16,18,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t99 15,16,19,21,23,25,26,27,

78,79,82,84,86,87,89,90

16 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,

48

t100 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t101 2,4,5,6,9,11,12,13,15,17,

19,20,22,23,26,28,36,37,

40,42

20 2,4,6,7,10,11 6 29,30

t102 2,4,5,6,9,11,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t103 8,9,12,14,23,25,26,27,

64,65,68,70,72,73,75,76

16 2,3,6,8,16,19,22 7 13,14,15,16,42,43,

44

t104 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,29,30,

33,35

20 2,4,6,7,9 5 25

t105 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

32,35

20 2,4,6,7,9 5 25

t106 15,16,19,21,23,25,26,27,

78,79,82,84,86,87,89,90

16 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,

48

t107 2,4,5,6,9,11,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t108 8,9,12,14,23,25,26,27,

64,65,68,70,72,73,75,76

16 2,3,6,8,16,19,22 7 13,14,15,16,42,43,

44

t109 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t110 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,29,30,

33,35

20 2,4,6,7,9 5 25

t111 2,4,5,6,9,11,12,13,16,18,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t112 15,16,19,21,23,25,26,27,

78,79,82,84,86,87,89,90

16 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,

48

67

t113 8,9,12,14,23,25,26,27,

64,65,68,70,72,73,75,76

16 2,3,6,8,16,19,22 7 13,14,15,16,42,43,

44

t114 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t115 2,4,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t116 1,3,5,6,9,11,12,13,16,18,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t117 1,3,5,6,9,11,12,13,16,18,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t118 8,9,12,14,23,25,26,27,

64,65,68,70,72,73,75,76

16 2,3,6,8,16,19,22 7 13,14,15,16,42,43,

44

t119 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t120 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t121 1,3,5,6,9,11,12,13,16,18,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t122 1,3,5,6,9,11,12,13,16,18,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

t123 8,9,12,14,23,25,26,27,

64,65,68,70,72,73,75,76

16 2,3,6,8,16,19,22 7 13,14,15,16,42,43,

44

t124 15,16,19,21,23,25,26,27,

78,79,82,84,86,87,89,90

16 2,4,5,8,16,20,23,26 8 21,22,23,24,46,47,

48

t125 1,3,5,6,8,10,12,13,15,17,

19,20,22,23,26,28,30,31,

33,34,37,38,40,41,44,45,

47,48

28 2,4,6,7,10,12,14 7 26,27,28,30,31,32,

34,35,36

Commission Problem

68

Test case Mutants

killed

Cov(t) for

mutants

Branches

covered

Cov(t) for

branches

Errors detected

t1 1,2,5,6,7,8,9,

11

8 2,3 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,

16,17,18,19,20,21,22,23,24,25,26,27,

28,29,30,31,32,33,34,35,36,57,58,59,

60,61,62,63

t2 1,2,5,6,7,8,9,

11

8 2,3 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t3 1,2,5,6,7,8,9,

11

8 2,3 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t4 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t5 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t6 1,2,5,6,7,8,9,

11

8 2,3 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t7 1,2,5,6,7,8,9,

11

8 2,3 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t8 1,2,5,6,7,8,9,

11

8 2,3 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t9 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t10 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t11 1,2,5,6,7,8,9,

11

8 2,3 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t12 1,2,5,6,7,8,9, 8 2,3 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

69

11 ,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t13 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t14 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t15 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t16 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t17 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t18 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t19 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t20 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t21 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t22 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t23 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t24 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

70

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t25 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t26 1,2,5,6,7,8,9,

11

8 2,3 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t27 1,2,5,6,7,8,9,

11

8 2,3 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t28 1,2,5,6,7,8,9,

11

8 2,3 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t29 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t30 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t31 1,2,5,6,7,8,9,

11

8 2,3 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t32 1,2,5,6,7,8,9,

11

8 2,3 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t33 8,9,11 3 2,3 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

61,62,63

t34 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t35 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t36 1,2,5,6,7,8,9,

11

8 2,3 2 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,57,58,59,60,

71

61,62,63

t37 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t38 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t39 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t40 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t41 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t42 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t43 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t44 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t45 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t46 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t47 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t48 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

72

t49 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t50 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t51 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t52 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t53 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t54 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t55 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t56 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t57 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t58 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t59 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t60 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t61 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

73

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t62 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t63 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t64 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t65 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t66 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t67 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t68 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t69 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t70 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t71 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t72 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t73 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

74

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t74 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t75 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t76 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t77 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t78 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t79 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t80 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t81 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t82 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t83 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t84 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t85 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

75

41,42,43,44,45,46,47,48,49,50,51

t86 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t87 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t88 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t89 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t90 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t91 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t92 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t93 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t94 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t95 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t96 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t97 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

76

t98 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t99 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t100 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t101 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t102 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t103 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t104 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t105 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t106 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t107 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t108 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t109 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t110 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

77

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t111 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t112 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t113 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t114 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t115 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t116 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t117 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t118 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t119 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t120 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t121 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t122 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

78

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t123 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t124 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

t125 1,2,4 3 1 1 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

,17,18,19,20,21,22,23,24,25,26,27,28,

29,30,31,32,33,34,35,36,37,38,39,40,

41,42,43,44,45,46,47,48,49,50,51

Date Problem

Test case Mutants killed Cov(t)

for

mutants

Branches covered Cov(t)

for

branches

Errors

detected

t1 22,24,25,28 4 1,13 2 13,14,15,16

t2 22,24,25,28 4 1,13 2 13,14,15,16

t3 22,24,25,28 4 1,13 2 13,14,15,16

t4 22,24,25,28 4 1,13 2 13,14,15,16

t5 22,24,25,28 4 1,13 2 13,14,15,16

t6 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t7 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t8 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t9 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t10 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t11 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t12 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t13 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t14 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t15 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t16 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t17 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t18 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t19 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t20 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t21 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t22 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t23 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t24 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t25 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

79

t26 22,24,25,28 4 1,13 2 13,14,15,16

t27 22,24,25,28 4 1,13 2 13,14,15,16

t28 22,24,25,28 4 1,13 2 13,14,15,16

t29 22,24,25,28 4 1,13 2 13,14,15,16

t30 22,24,25,28 4 1,13 2 13,14,15,16

t31 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t32 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t33 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t34 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t35 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t36 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t37 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t38 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t39 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t40 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t41 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t42 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t43 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t44 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t45 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t46 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t47 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t48 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t49 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t50 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t51 22,24,25,28 4 1,13 2 13,14,15,16

t52 22,24,25,28 4 1,13 2 13,14,15,16

t53 22,24,25,28 4 1,13 2 13,14,15,16

t54 22,24,25,28 4 1,13 2 13,14,15,16

t55 22,24,25,28 4 1,13 2 13,14,15,16

t56 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t57 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t58 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t59 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t60 43,45,46,49 4 2,4,6,8,10,12,16,18,20,22,26,29,31 13 37,38,39,40

t61 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t62 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t63 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t64 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t65 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t66 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t67 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t68 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t69 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t70 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t71 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t72 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t73 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

80

t74 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t75 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t76 22,24,25,28 4 1,13 2 13,14,15,16

t77 22,24,25,28 4 1,13 2 13,14,15,16

t78 22,24,25,28 4 1,13 2 13,14,15,16

t79 22,24,25,28 4 1,13 2 13,14,15,16

t80 22,24,25,28 4 1,13 2 13,14,15,16

t81 2,4,5,6,44,45,46,

48,50,

51,54,56

12 22,4,6,8,10,12,16,18,20,22,26,29,3

2,33,36

15

t82 1,2,5,7,8,10,12,1

4,50,51,54,56

12 2,4,6,8,10,12,16,18,20,22,26,29,32

,33,35

15 1,2,3,4

t83 2,4,5,6,44,45,46,

48,50,

51,54,56

12 2,4,6,8,10,12,16,18,20,22,26,29,32

,33,36

15

t84 2,4,5,6,44,45,46,

48,50,

51,54,56

12 2,4,6,8,10,12,16,18,20,22,26,29,32

,33,36

15

t85 1,2,5,7,15,16,19,

21,50,

51,54,56

12 2,4,6,8,10,12,16,18,20,22,26,29,32

,33,3

15 1,2,3,4,9,10,11,

12

t86 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t87 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t88 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t89 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t90 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t91 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t92 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t93 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t94 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t95 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t96 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t97 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t98 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t99 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t100 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t101 22,24,25,28 4 1,13 2 13,14,15,16

t102 22,24,25,28 4 1,13 2 13,14,15,16

t103 22,24,25,28 4 1,13 2 13,14,15,16

t104 22,24,25,28 4 1,13 2 13,14,15,16

t105 22,24,25,28 4 1,13 2 13,14,15,16

t106 2,4,5,6,43,45,47,

48,51,53,54,55,

57,58,61,63

16 2,4,6,8,10,12,16,18,20,22,26,29,32

,34,37,40

16

t107 1,2,5,7,8,10,12,

14,43,45,47,48,

51,53,54,55,57,

58,61,63

20 2,4,6,8,10,12,16,18,20,22,26,29,32

,34,37,40

16 1,2,3,4

81

t108 2,4,5,6,43,45,47,

48,51,53,54,55,

57,58,61,63

16 2,4,6,8,10,12,16,18,20,22,26,29,32

,34,37,40

16

t109 2,4,5,6,43,45,47,

48,51,53,54,55,

57,58,61,63

16 2,4,6,8,10,12,16,18,20,22,26,29,32

,34,37,40

16

t110 1,2,5,7,15,16,19,

21,43,45,47,48,

51,53,54,55,57,

58,61,63

20 2,4,6,8,10,12,16,18,20,22,26,29,32

,34,37,39

16 1,2,3,4,9,10,11,

12

t111 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t112 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t113 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t114 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t115 29,31,32,35 4 2,4,6,8,10,12,16,17,23 9 21,22,23,24

t116 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t117 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t118 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t119 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t120 29,31,32,35 4 2,4,6,8,10,12,16,18,20,21,23 11 21,22,23,24

t121 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t122 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t123 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t124 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

t125 36,38,39,42 4 2,4,6,8,10,12,16,18,20,22,25,27 12 29,30,31,32

